Skip to main content

Advertisement

Log in

Root Colonization and Phytostimulation by Phytohormones Producing Entophytic Nostoc sp. AH-12

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P < 0.05) as a result of ipt inactivation as evident by low chlorophyll a concentration in the roots. In contrast to the mutant strain, wild type strain showed good association with the roots and enhanced several growth parameters, such as fresh weight, dry weight, shoot length, and root length of the crop plants. The study clearly demonstrated that Ck is a tool of endophytic Nostoc to colonize plant root and promote its growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Hong Kong/P.R.China)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams DG, Bergman B, Nierzwicki-Bauer SA, Rai AN, Schussler A (2006) Cyanobacterial-plant symbioses. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes a Handbook on the Biology of Bacteria, vol 1. Springer, New York, pp 263–282

    Google Scholar 

  2. Adams DG, Duggan PS (2012) Signalling in cyanobacteria-plant symbioses. Signal Commun Plant Symbiosis 10:93–121

    Article  Google Scholar 

  3. Ahmed M, Stal LJ, Hasnain S (2010) Association of non-heterocystous cyanobacteria with crop plants. Plant Soil 336(1):363–375

    Article  CAS  Google Scholar 

  4. Anjard C, Loomis WF (2008) Cytokinins induce sporulation in Dictyostelium. Sci Signal 135(5):819

    CAS  Google Scholar 

  5. Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19(2):144–154

    PubMed  CAS  Google Scholar 

  6. Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans Royal Soc B 363(1504):2731–2743

    Article  CAS  Google Scholar 

  7. Eaton-Rye JJ (2004) The construction of gene knockouts in the cyanobacterium Synechocystis sp. PCC 6803. In: Photosynthesis research protocols. Humana Press, pp 309–324

  8. Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M (2013) Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 27:599–609

    Article  Google Scholar 

  9. Hussain A, Hasnain S (2010) Phytostimulation and biofertilization in wheat by cyanobacteria. J Ind Microbiol Biotechnol 38(1):85–92

    Article  PubMed  Google Scholar 

  10. Hussain A, Krischke M, Roitsch T, Hasnain S (2010) Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol 61(5):361–369

    Article  PubMed  CAS  Google Scholar 

  11. Jain IH, Vijayan V, O’Shea EK (2012) Spatial ordering of chromosomes enhances the fidelity of chromosome partitioning in cyanobacteria. Proc Natl Acad Sci 109(34):13638–13643

    Article  PubMed  CAS  Google Scholar 

  12. Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl–acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610

    Article  PubMed  CAS  Google Scholar 

  13. Kakimoto T (2003) Biosynthesis of cytokinins. J Plant Res 116(3):233–239

    Article  PubMed  CAS  Google Scholar 

  14. Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43(1):23–30

    Article  CAS  Google Scholar 

  15. Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315(5808):101

    Article  PubMed  CAS  Google Scholar 

  16. Myllys L, Stenroos S, Thell A, Kuusinen M (2006) High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytol 173(3):621–629

    Article  Google Scholar 

  17. Nilsson M, Bhattacharya J, Rai AN, Bergman B (2002) Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytol 156(3):517–525

    Article  Google Scholar 

  18. Nilsson M, Rasmussen U, Bergman B (2005) Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiol Lett 245(1):139–144

    Article  PubMed  CAS  Google Scholar 

  19. Olsson S, Kaasalainen U, Rikkinen J (2012) Reconstruction of structural evolution in the trnL intron P6b loop of symbiotic Nostoc (Cyanobacteria). Curr Genet 58:49–58

    Article  PubMed  CAS  Google Scholar 

  20. Pankratova EM, Trefilova LV, Zyablykh RY, Ustyuzhanin IA (2008) Cyanobacterium Nostoc paludosum as a basis for creation of agriculturally useful microbial associations by the example of bacteria of the genus Rhizobium. Microbiology 77(2):228–234

    Article  CAS  Google Scholar 

  21. Porter RD (1988) DNA transformation. Methods Enzymol 167:703–712

    Article  PubMed  CAS  Google Scholar 

  22. Rai AN, Bergman B (2002) Creation of new nitrogen-fixing cyanobacterial associations. Biol Environ Proc Royal Ir Acad 102(1):65–68

    Article  Google Scholar 

  23. Raven JA (ed) (2003) How have genome studies improved our understanding of organelle evolution and metabolism in red algae? Red algae in the genomic age. Springer, New York

    Google Scholar 

  24. Kv Schwartzenberg (2006) Moss biology and phytohormones-cytokinins in Physcomitrella. Plant Biol 8(3):382–388

    Article  Google Scholar 

  25. Selivankina SY, Zubkova NK, Kupriyanova EV, Lyukevich TV, Kusnetsov VV, Los DA, Kulaeva ON (2006) Cyanobacteria respond to cytokinin. Russ J Plant Physiol 53(6):751–755

    Article  CAS  Google Scholar 

  26. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  PubMed  CAS  Google Scholar 

  27. Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme Arabidopsis thaliana. J Biol Chem 276(28):26405–26410

    Article  PubMed  CAS  Google Scholar 

  28. Tamas I, Nenin P, Drobac A (1997) Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl Soil Ecol 6(3):301–308

    Article  Google Scholar 

  29. Webb VL, Maas EW (2002) Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett 207(1):43–47

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, A., Hamayun, M. & Shah, S.T. Root Colonization and Phytostimulation by Phytohormones Producing Entophytic Nostoc sp. AH-12. Curr Microbiol 67, 624–630 (2013). https://doi.org/10.1007/s00284-013-0408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0408-4

Keywords

Navigation