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A B S T R A C T

qRT-PCR (real-time reverse transcription-PCR) has become the benchmark for the detection
and quantification of RNA targets and is being utilized increasingly in novel clinical diagnostic
assays. Quantitative results obtained by this technology are not only more informative than
qualitative data, but simplify assay standardization and quality management. qRT-PCR assays are
most established for the detection of viral load and therapy monitoring, and the development
of SARS (severe acute respiratory syndrome)-associated coronavirus qRT-PCR assays provide a
textbook example of the value of this technology for clinical diagnostics. The widespread use of
qRT-PCR assays for diagnosis and the detection of disease-specific prognostic markers in leukaemia
patients provide further examples of their usefulness. Their value for the detection of disease-
associated mRNA expressed by circulating tumour cells in patients with solid malignancies is far
less apparent, and the clinical significance of results obtained from such tests remains unclear. This
is because of conceptual reservations as well as technical limitations that can interfere with the
diagnostic specificity of qRT-PCR assays. Therefore, although it is evident that qRT-PCR assay has
become a useful and important technology in the clinical diagnostic laboratory, it must be used
appropriately and it is essential to be aware of its limitations if it is to fulfil its potential.

INTRODUCTION

qRT-PCR [real-time RT (reverse transcription)-PCR] [1]
has become the standard for the detection and quanti-
fication of RNA targets [2] and is firmly established as
a mainstream research technology [3]. Its potential for
high-throughput, together with regular introduction of
enhanced or novel chemistries, more reliable instrument-
ation and improved protocols, has also seen the develop-
ment of qRT-PCR-based clinical diagnostic assays [4–6].
Although not necessarily more sensitive than con-
ventional RT-PCR [7], qRT-PCR assays have several
significant advantages [8]: (i) they use fluorescent reporter

molecules to monitor the production of amplification
products during each cycle of the PCR, and the
combination of the DNA amplification and detection
steps into one homogeneous assay obviates the require-
ment for post-PCR processing; (ii) their wide dynamic
range allows the analysis of samples differing in target
abundance by orders of magnitude; (iii) there is little
inter-assay variation, which helps generate reliable and
reproducible results; and (iv) fluorescence-based qRT-
PCR realizes the inherent quantitative capacity of PCR-
based assays [9], making it a quantitative rather than a
qualitative assay. This is important as there is an obvious
need in molecular medicine for quantitative data, e.g. for
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Figure 1 Characteristics of qRT-PCR amplification curves,
which plot fluorescence signal versus cycle number
The curves for three samples, run in duplicate, are shown. C t values are indicated
by arrows and represent the cycle fractions where the instrument can first reliably
detect fluorescence derived from the amplification reaction. The fluorescence signal
during the initial cycles of the PCR is below the instrument’s detection threshold
and defines the baseline for the amplification plot. An increase in fluorescence
above the threshold indicates the detection of accumulated PCR product. The key
parameter C t is defined as the fractional cycle number from clinical samples at
which the fluorescence passes a fixed threshold chosen either by the instrument
or by the operator. A plot of the log of initial target copy number for a set of
standards versus C t is a straight line. The amount of target in an unknown sample
is quantified by measuring the C t and using the standard curve to determine
starting copy number.

measuring viral load or monitoring of response to therapy
in haematological malignancies.

In theory, RT-PCR differs from PCR only by the
addition of a preliminary step, the initial conversion of
RNA into a DNA template by an RNA-dependent DNA
polymerase (reverse transcriptase). In practice, this

additional procedure results in a much more fragile and
variable assay [10,11]. Nevertheless, despite the problems
associated with this technique, its promise has resulted in
a concerted effort to develop diagnostic assays that make
use of the assay’s strengths, whilst trying to circumvent
its pitfalls [12].

WHAT IS qRT-PCR?

The principle of qRT-PCR assays is straightforward: fol-
lowing the RT of RNA into cDNA, it requires a suitable
detection chemistry to report the presence of PCR pro-
ducts, an instrument to monitor the amplification in real-
time and appropriate software for quantitative analysis
[13]. qRT-PCRs are characterized by the point in time
during cycling when amplification of a PCR product is
first detected (Figure 1). The higher the starting copy
number of the nucleic acid target, the sooner a significant
increase in fluorescence is observed.

Detection chemistries can be either probe- or non-
probe based, also referred to as ‘specific’ and ‘non-speci-
fic’ respectively. The most widely used non-probe-based
chemistry detects the binding of SYBR Green I to ds
(double-stranded) DNA [14]. In solution, the unbound
dye exhibits little fluorescence; during the PCR assay,
increasing amounts of dye bind to the nascent ds DNA.
When monitored in real-time, this results in an increase
in the fluorescence signal as the polymerization proceeds.
The PCR product can be verified by plotting fluorescence
as a function of temperature to generate a melting curve
of the amplicon [15] (Figure 2). An important advant-
age of non-probe-based chemistries is that in most

Figure 2 Dissociation curves are useful for determining the presence of multiple species in the sample
Every PCR product melts at a characteristic temperature, its Tm (melting temperature). A characteristic melting peak at the amplicon’s Tm will usually distinguish it from
amplification artifacts that melt at lower temperatures in broader peaks. In the PCR, these are typically primer–dimer artifacts or non-specific amplicons. For standard
analysis, samples are first melted at 95 ◦C, and then equilibrated at 60 ◦C before being slowly re-heated (dissociated) back to 95 ◦C. The centre of each peak reflects
Tm . The dissociation curves show typical primer–dimer formation. The specific product is shown with a Tm of 87 ◦C, whereas the primer–dimer (�) has a charac-
teristically lower Tm of 79 ◦C. Primer–dimers will be most prevalent in NTC (‘no template control’) wells and sample wells containing low concentrations of template.
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Figure 3 The principle of the 5′ nuclease (TaqMan) assay
The RT step synthesizes a cDNA copy of the RNA template. After denaturation,
primers and probe anneal to their targets. The probe contains a reporter dye at
the 5′ end and a quencher (Q) at its 3′ end. During the polymerization step, the
5′ nuclease activity of the Taq polymerase displaces and cleaves the probe. This
physically separates the reporter dye and quencher dyes, resulting in reporter
fluorescence. The increase in signal is directly proportional to the number of
molecules released during that cycle. Accumulation of PCR products is detected
directly by monitoring the increase in fluorescence of the reporter dye.

instances optimized conventional RT-PCR assays can
be converted immediately into real-time assays [16]. An
important disadvantage is that their specificity remains
dependent on the specificity of the primers.

Probe-based chemistries make use of amplicon-speci-
fic fluorescent probes and a fluorescent signal is only
generated if the probe hybridizes with its complementary
target (Figure 3). Therefore probe-based chemistries
introduce an additional level of specificity, in effect com-
bining RT-PCR with a validation step previously carried
out separately after the PCR.

Multiplexing permits the detection and differentiation
of multiple targets, e.g. infectious agents or biomarkers,
in a single tube at the same time. Although SYBR Green

has been used for the simultaneous detection of enteric
[17] and noroviruses [18], its scope is rather limited, not
least because the preferential binding of SYBR Green to
specific DNA sequences during amplification interferes
with PCR kinetics [19]. Other non-specific chemistries
[20,21] are not any better at multiplexing than SYBR
Green [22], but a recently developed non-probe-based
chemistry promises to simplify multiplexing. It uses
isoguanosine (iG) and isocytosine (iC) [23], which can
pair only with each other. Upstream (sense) PCR primers
are tagged at their 5′ ends with different fluorophores
plus a single iso-dC (5′-methylisocytosine). A quencher-
labelled iso-dG (2′-deoxyisoguanosine) is added to the
amplification master mix and its incorporation opposite
iso-dC results in increasing fluorescence quenching
during amplification [24]. This technology is available
as ‘Plexor’ from Promega. For multiplexing with probe-
based chemistries, probes are labelled with different
fluorophores. There are three oligonucleotides per target,
which can result in non-specific interactions between
the primers and probes, and this demands careful assay
design and reagent selection [25]. At the moment, quad-
ruplex (quintuplex on the ABI 7500 and Stratagene
MX3005P) assays are possible, but stretch the limits of
the technology’s capabilities [26]. Nevertheless, improved
chemistries are constantly being developed and validated
and it is clear that multiplex qRT-PCR will have an
important role to play in clinical diagnostic assays [27].

It is also possible to carry out nested qPCR (quanti-
tative PCR) assays [28] that consist of two separate
amplification reactions primed by two sets of primers:
the first reaction primed by two external primers is fol-
lowed by a second reaction that uses two internal
primers and a hybridization probe. Nested PCR assays
can provide higher analytical sensitivity [29], and have
been successfully applied to the early detection of the
SARS (severe acute respiratory syndrome) virus [29,30].
However, increased susceptibility to contamination is
an ever-present problem and the actual sensitivity and
specificity of this method remains to be evaluated with
studies involving a larger number of clinical specimens.

QUANTIFICATION STRATEGIES

Quantification can either be relative to an external stan-
dard curve or to one or more co-amplified internal con-
trol mRNAs [2]. The former is based on the use of
a dilution series of an external standard, which can be
used to generate a standard curve of Ct (threshold cycle)
against initial target copy number [31]. The copy num-
bers of unknown samples can be calculated from the
linear regression of that standard curve, with the y-inter-
cept giving the sensitivity and the slope giving the
amplification efficiency. Standard curves can be con-
structed from PCR fragments, in vitro T7-transcribed
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sense RNA transcripts, single-stranded sense-strand syn-
thetic oligodeoxyribonucleotides or from commercially
available universal reference RNAs [32]. This strategy is
most obviously useful for quantifying viral or tumour
load in body fluids. The accuracy of absolute quanti-
fication depends entirely on the accuracy of the standards.
In general, standard curves are highly reproducible and
allow the generation of specific and reproducible results.
However, external standards cannot detect or compensate
for inhibitors that may be present in the samples.

Quantification relative to internal standards compares
the Ct values from target RNAs to those of one or more
internal reference genes and results are expressed as ratios
of the target-specific signal to the internal reference.
This produces a corrected relative value for the target-
specific RNA product that can be compared between
samples and allows an estimate of the relative expression
of target mRNA in those samples. It is crucial that
the amplification efficiencies of target and reference are
similar, since this directly affects the accuracy of any
calculated expression result. Several models have been
published that use different algorithms to correct for
efficiency and claim to allow a more reliable estimation
of the real expression ratio [33,34]. However, since the
expression of most reference genes is regulated and
their levels usually vary significantly with treatment or
between individuals, relative quantification can be mis-
leading [35]. Furthermore, if the relative levels of the
reference and target RNAs vary by orders of magnitude,
during amplification the former may have entered its
plateau phase by the time a Ct for the target becomes
apparent. Unless compensated for, this may interfere with
the accurate quantification of the target RNA.

QUALITY CONTROL ISSUES

Optimization and consistency are as critical for obtaining
reproducible results using qRT-PCR as they are for
conventional methods [36]. qRT-PCR assays are signifi-
cantly less variable than conventional RT-PCR protocols
[37–39], which are subject to significant error [40,41].
However, since reproducibility is influenced by para-
meters such as distribution statistics [42], qRT-PCR data
are less reproducible when working with very low copy
numbers due to the stochastic sampling effects [43]. This
emphasizes the importance of repetitive testing in clinical
samples and one of the strengths of these assays is the
ease with which it is possible to determine multiple Ct

values for every sample, which encourages replicate de-
terminations of the same sample and permits the appli-
cation of statistical analyses to the quantification pro-
cedure.

Like any clinical diagnostic assay, qRT-PCR must be
properly validated [44] and meet the criteria expected of
any laboratory test applied in clinical medicine: (i) stan-

dardization of the test across different laboratories; (ii) re-
producibility of positive and negative predictive values;
and (iii) reliable sensitivity and specificity. This involves
the establishment of a set of quality protocols, the use
of appropriate positive- and negative-control samples,
and suitable analysis and reporting guidelines. Standard-
ization is all-important [5,45] and generates the robust
and reliable results that are of critical importance for
the management of patients entered into multicentre
therapeutic trials [46].

A successful clinical diagnostic qRT-PCR assay re-
quires careful consideration of several issues. (i) Optimal
sample quality is a prerequisite to generate valid quanti-
tative data [47]. Hence sample collection, preparation and
transport and RNA extraction methods are all critical
parameters in test performance and must be optimized.
In general, extraction of RNA from blood and serum is
relatively straightforward, whereas there are significant
problems associated with the extraction of RNA from
solid tumours, faeces and semen samples. The main prob-
lems are that RNA is easily degraded and that it is easy
to co-purify inhibitors of the RT or PCR steps which
will generate inconsistent results. (ii) Primer selection,
especially of the reverse primer used in the RT-step, is
critical since it affects the sensitivity of the RT-PCR assay
[48]. The structure of the RNA target at the primer-
binding site must be taken into account, as this affects the
accessibility of the target to the primers. mRNA displays
extensive secondary structure and selection of a primer
binding site in a ds target site that is folded will result
in a very inefficient assay. For RNA viruses there is the
additional problem of different viral serotypes resulting
in sequence variability and it may be necessary to use a
nested RT-PCR assay with universal primers that bind to
target sequences which are shared by all the serotypes,
followed by a serotype-specific primer pair [49].
(iii) Regular calibration of the real-time instrument is
crucial for obtaining consistent and accurate results. Ct

is neither absolute nor invariant, but varies between as-
says carried out on different days with different reagents
or on different instruments. This is because Ct depends
on the instrument’s threshold setting, which depends on
background fluorescence, which in turn varies with dif-
ferent probes, chemistries, instruments and assay proto-
cols. Therefore samples should not be compared by
Ct values [11], but they should be converted into and
reported as target copy numbers. (iv) Analytical sen-
sitivity and specificity are critical parameters of any
diagnostic qRT-PCR assay. Analytical sensitivity refers
to the smallest number of RNA molecules that can be
detected and distinguished from a zero result and is
best calculated using a standard curve which defines the
range of the assay. It is inappropriate to report results
that lie significantly outside the upper and lower concen-
tration of target defined by the standard curve. Analytical
specificity is determined by identifying the percentage of
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samples without the target sequence that also generate a
negative result. (v) There must be agreement between
replicates within and between runs of the assay, as
this provides important information about the reliability
of the assay. Repeatability is measured as the amount of
agreement between replicates tested in different runs in
the same laboratory. Reproducibility is determined in
several laboratories using the identical assay (protocol,
reagents and controls). It is important to maintain the
internal quality control by monitoring the assay for both
parameters. If the assay is to be applied in another geo-
graphical region and/or population, it might be necess-
ary to revalidate it under the new conditions as mutations
or polymorphisms within the primer sites, especially at
their 3′ ends, will affect the performance of the assay and
render the established validation no longer valid. It is
also advisable to regularly sequence the selected genomic
regions in the national isolates of the infectious agents.
This is especially true for the primer sites to ensure that
they remain stable, so that the validation of the assay
cannot be questioned. (vi) False-positive results may arise
either from product carryover from positive samples
or, more commonly, from cross-contamination by PCR
products from earlier experiments [50]. It is critically
important to include negative controls, i.e. samples that
are as similar to the test samples as possible but exclude
the target. It is also advisable to include a no RT
control that excludes the reverse transcriptase to exclude
signal generation from contaminating DNA. Since false-
negative results in an optimized assay are mostly due to
inhibitory effects and/or pipetting errors, it is important
to always include a positive control with any qRT-PCR
assay [51], ideally in the form of a standard curve. In
addition, all samples should be tested for inhibition using
a simple ‘alien’ assay [11] and any RNA preparations
showing inhibition must be repurified.

A recent report [52] suggests that the variability of
calibration curves is strongly influenced by the large vari-
ability of the measurements below 100 copies of a target
gene. The authors [52] propose reducing the variance
of the standard curve by not running the 1 and 10 copy
standards and instead adding additional dilutions be-
tween 10 and 100 copies to the standard curve. The
problem with this approach is that the highest dilutions
provide information about the variability of the assay at
those very low target copy numbers. qRT-PCR facilitates
the inclusion of exact sensitivity controls on a per sample
basis [53] and, clearly, PCR findings, positive or negative,
are questionable if they are not supported by the associ-
ated data demonstrating the overall sensitivity of the assay
applied [44]. Therefore it is acceptable to omit the highest
dilutions if the target copy numbers are well above that
threshold number. However, if the assay’s specification
is to detect 1–50 target copies, the standard curve must
include the 1 and 10 copy dilutions. The authors also
state that the reduced variance of the modified stan-

dard curve makes it unnecessary to construct a calibration
curve with each run and that running of the samples in
duplicate is unnecessary. Running a standard curve with
each assay immediately reveals any problem with that
particular run and increases confidence when reporting
negative results. The same argument applies to runn-
ing samples in duplicate or, preferably, in triplicate and in
this qRT-PCR is no different from any clinical diagnostic
assay.

APPLICATIONS

Viral pathogens
RNA viruses constitute the most abundant group of
pathogens in man, animals and plants and are classified
according to their RNA genome. The low efficiency
of proofreading and post-replicative repair activities of
viral RNA polymerases results in high mutation rates,
causing potential problems for an assay that relies on
exquisite sequence specificity. Furthermore, populations
of RNA viruses are extremely heterogeneous and RNA
viral genomes are statistically defined but individually
indeterminate. This has raised some concerns about the
detrimental effect of primer–template mismatches on
the polymerization efficiency and problems associated
with geographically disparate reference sequences [54].
Nevertheless, the ability of qRT-PCR to generate accurate
quantitative data has had a huge impact on the study of
viral agents of infectious disease [55] and is helping to
clarify disputed infectious disease processes and demon-
strate links between specific viral sequences and patient
clinical symptoms [56]. However, the lack of commer-
cially available validated reagent kits for most viruses
remains a major problem, as does the absence of stan-
dardization of the existing tests [57].

Negative-strand RNA viruses
The genome of negative-stranded RNA viruses consists
of ss (single-stranded) ‘antisense’ RNA. These are tran-
scribed into sense-strand mRNA by RNA-dependent
RNA polymerases supplied by the viruses. This group
includes the measles and mumps viruses and various
viruses targeting the respiratory tract. Influenza virus
types A and B, RSV (respiratory syncytial virus) and PIV
(parainfluenza virus) types 1–4 cause respiratory infec-
tions of the upper and lower respiratory tract in
infants and young children and are important causes of
severe lower respiratory tract disease in elderly and im-
munocompromised patients, with significant morbidity
and mortality. Since these respiratory viral pathogens
cause very similar clinical symptoms, differential dia-
gnosis of the pathogens is required. Although multiplex
conventional RT-PCR assays have been developed, they
tend to be less sensitive than individual assays [56] and
require extensive post-PCR manipulation. For example,
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a recent report [58] describes the detection of the seven
viruses in a combined RT-PCR/enzyme-linked amplicon
hybridization assay; however, post-PCR processing in-
volves a hybridization reaction, incubations, washes and
spectrophotometric analysis. In contrast, a novel qRT-
PCR assay consists of two multiplex reactions, one de-
tecting influenza A and B and RSV, the other one PIV
1–4, and can generate a result within 6 h. The assays
display 100 % specificity and detected virus in an ad-
ditional 23 % of samples [59]. Other real-time assays
can differentiate between influenza A subtypes [60,61]
and RSV A and B [62] facilitating diagnosis, patient
management and strain identification for vaccine pro-
duction. A recent report [63] describes the specific de-
tection of mumps virus not only in typical, but also in
suspected cases which show only symptoms of meningitis
or encephalitis.

Positive-strand RNA viruses
The genome of positive-stranded RNA viruses consists
of ss ‘sense’ RNA and specifies its own RNA-dependent
RNA polymerase. The RNA is translated by the host
and then catalyses the synthesis of large numbers of
antisense replicative intermediates that, in turn, serve
as templates for the synthesis of a large number of
mRNA molecules. This group includes the entero-,
rhino- and corona-viruses. The SARS outbreak provides
a textbook example of the importance and usefulness of
qRT-PCR assays. SARS emerged in southern China in
November 2002 and within months the disease had spread
globally, affecting over 8000 patients in 29 countries
with 774 fatalities. Although useful in the identification
of the SARS virus, conventional RT-PCR assays were
insufficiently sensitive to provide a diagnosis in the
first few days after disease onset, the period during
which laboratory diagnosis is most relevant for patient
care. qRT-PCR-based diagnostic assays for the associated
coronavirus were rapidly developed [64,65] and improved
to result in an assay with 100 % specificity in samples
collected from day 1–3 of disease onset [66,67]. The
assay’s potential for high throughput was also of critical
importance in areas with outbreaks of SARS in which
large numbers of specimens had to be tested. In addition,
the ability to quantify helped elucidate the pathogenesis
of the disease, showing that, unlike other respiratory viral
infections, viral load and rates of positivity of SARS
coronavirus in the upper respiratory tract increased
progressively to peak at around day 10 after disease
onset [68]. Viral load was highest in specimens of the
lower respiratory tract and was higher in nasopharyngeal
aspirate than in throat swabs [69]. Faecal samples had
very high viral loads towards the end of the first week
of illness, and were the specimen of choice during the
second week of disease [70].

The qRT-PCR assay also provides critical prognostic
information for clinical management. It revealed that high

viral load in the nasopharyngeal aspirate was associated
with the occurrence of diarrhoea [71], the requirement
for intensive care [72] and was an independent predictor
of mortality [71]. qRT-PCR assays can now be used
routinely to exclude SARS-associated coronavirus in
patients hospitalized with respiratory symptoms even
in the presence of other respiratory viruses [73]. qRT-
PCR assays have been designed that are specific for
other positive-strand RNA viruses. A qRT-PCR assay
developed for the clinical diagnosis of viral meningitis
detects enterovirus in cerebrospinal fluid [74] and is
significantly more sensitive than viral culture [75]. An-
other assay targets noroviruses, one of the most com-
mon aetiological agents of outbreaks of acute gastro-
enteritis [76]. This assay is four orders of magnitude more
sensitive than a conventional RT-PCR assay with the same
primer sets and as sensitive as nested conventional RT-
PCR [77].

ds RNA viruses
A third group of viruses has a segmented ds RNA
genome, together with a RNA-dependent RNA poly-
merase that transcribes each of the ds RNA molecules
into an mRNA. This group includes human rotaviruses,
the most important aetiological agents of severe diar-
rhoeal illness of infants and young children worldwide.
The classical clinical presentation of rotaviral infection is
fever and vomiting, followed by non-bloody diarrhoea,
which can lead to severe and potentially life-threatening
dehydration. qRT-PCR assays based on SYBR Green
[78] and TaqMan [79] chemistries have been developed
and validated and are beginning to reveal the virus’s
epidemiology and pathogenesis [80].

Retroviruses
Viruses in this group, which include HIV and HTLV
(human T-cell leukaemia virus), contain RNA-dependent
DNA polymerases that copy their RNA genome
into DNA, which integrates into the host genome. The
hosts’ normal transcription generates viral mRNA which
is either translated or packaged into new virus particles.
The concentration of HIV-1 RNA in the plasma of HIV-
infected individuals is an important predictor of
disease outcome and a marker of antiretroviral drug
efficacy, allowing a specific analysis of treatment failure
caused by emerging resistance to specific anti-retroviral
compounds. The most sensitive FDA (Food and Drug
Administration)-approved tests for HIV-1 RNA in
plasma have detection limits of 50 copies/ml [81,82] and
treatment is generally considered successful if the level
of viraemia can be reduced to below this level. However,
reduction of the HIV-1 RNA load to <50 copies/ml does
not guarantee long-term success, and a rebound of drug
resistance can occur, implying that HIV-1 replication
and evolution is continuing while patients are receiving
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therapy. Many patients whose levels of viraemia are
suppressed to <50 copies/ml have persistently detectable
HIV-1 RNA [83]. Consequently, the development of
qRT-PCR assays that can detect and quantify HIV-1
RNA in plasma down to 1 copy/ml promises a significant
increase in the accuracy and clinical relevance of HIV
testing [84].

The extreme sequence heterogeneity of HIV-1 poses
a significant challenge to the efficient detection with
nucleic-acid-based assays. Not only must the primers
bind to regions that are conserved and not subject to rapid
mutation, but also the probes used for specific chemistry
assays must not hybridize to mutating sequences. This
has led to the development of non-specific SYBR-Green-
based assays that rely on the use of melting curves to
ensure that the obtained signal is specific [85]. These
assays are better than branched-chain DNA assays in
determining viral load [86], especially during the moni-
toring of HAART (highly active anti-retroviral therapy)
treatment [87], and have a superior linearity over a wide
concentration range [88]. The imminent release of the
iso-C/G chemistry (see above) promises to enhance
the performance of non-probe-dependent chemistries.

A multiplex real-time quantitative RT-PCR assay
was developed for simultaneous detection, identification
and quantification of HBV (hepatitis B virus), HCV
(hepatitis C virus) and HIV-1 in plasma or serum samples.
Genomic amplification of one virus was unaffected by the
simultaneous amplification of the other two. Although
competition between HCV and HIV-1 amplifications
slightly affected the yield of HIV-1 amplification, quanti-
fication of a single virus was possible [89].

The IPCR (immunopolymerase chain reaction) assay
combines the molecular recognition of antibodies with
the high amplification capability of PCR [90], and real-
time IPCR assays have been developed for the detection
of cellular proteins such as VEGF (vascular endothelial
growth factor), which is elevated in some cancers [91],
and gliadins in patients with coeliac disease [92]. The
procedure is similar to conventional ELISAs but allows
for more sensitive detection. Instead of an enzyme, a
DNA molecule is linked to the detection antibody and
serves as a template for PCR. A real-time IPCR assay
has been reported for the detection of HIV [93]. This
assay detects the p24 protein of the virus, rather than viral
nucleic acid. Since each virus particle contains thousands
of molecules of p24, there is a greater amount of target to
detect.

Disease-specific marker detection
Overall leukaemia-free survival rates in adult AL (acute
leukaemia) depend on the diagnostic subtype of AL.
These subtypes display significant differences in their
clinical features, treatment responses, relapse sites and
kinetics. Risk models are continuously amended with

new prognostic factors, one of which is the evaluation of
MRD (minimal residual disease), and the ability of qRT-
PCR to quantify MRD has resulted in its widespread
adaptation for this purpose.

CML (chronic myeloid leukaemia) is characterized by
the presence of the Philadelphia chromosome, a recipro-
cal t(9;22) translocation that transposes the c-abl onco-
gene from chromosome 9q34 to the BCR gene on
chromosome 22q11. The rearranged BCR-ABL gene is
transcribed into a chimaeric mRNA, which in turn
is translated into a 210 kDa fusion protein (p210) that me-
diates myeloid proliferation and transformation. Detec-
tion of this distinctive cytogenetic abnormality is the
most important prognostic parameter for the assessment
of complete remission and long-term survival. However,
the sensitivity of cytogenetic analysis is low and, by the
time disease is detectable, clinical relapse may be inevi-
table.

This has resulted in the development of RT-PCR-based
monitoring methods that can detect all break points and
can be performed on peripheral blood specimens [94].
The most comprehensive validation of a qRT-PCR assay
for clinical diagnostic use tested 372 clinical specimens
and 50 peripheral blood samples from patients not known
to have any myeloproliferative disorders. The assay was
shown to be 100 % specific, and able to detect a single
copy of a target spiked into negative RNA. The between-
run reproducibility had a CV (coefficient of variance)
of 12.3 %, and within-run reproducibility had a CV of
13.8 % [95], helping replace conventional RT-PCR assays,
even nested ones [96], as the most sensitive and reliable
method for molecular follow-up [97,98].

Its capacity for accurate quantification is a significant
advantage of qRT-PCR assays, since mere detection of
MRD does not permit reliable prediction of the course
of disease in individual patients [99], whereas its quan-
tification correlates with disease stage [100]. Conse-
quently, monitoring of the dynamics of residual disease in
CML patients by serial qRT-PCR performed at regular
intervals predicts impending clinical relapse in patients
who are still in haematological and cytogenetic remission
and is useful in guiding clinical therapeutic decisions
[101,102].

Detection of disease-specific translocations is also at
the core of strategies aimed at assessing the response
of individual patients to therapeutic intervention [103].
Conventional RT-PCR results reporting on treatment
response in patients who had undergone allogeneic-
matched sibling SCT (stem cell transplantation) were
ambiguous, with some reports identifying subgroups of
patients at risk of disease recurrence, and others detect-
ing no association between PCR positivity and sub-
sequent relapse [104,105]. Conversely, qRT-PCR assays
quantifying levels of BCR-ABL RNA showed no such
ambiguity and were clearly able to identify patients
likely to relapse after bone marrow transplant [106–109],
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making this technology the method of choice for early
therapeutic decision making [110].

qRT-PCR is also penetrating clinical diagnostic assays
designed to detect other haematological malignancies.
The presence of a transcript specifying a BCR–ABL
fusion protein of 190 kDa in ALL (acute lymphoblastic
leukaemia) usually indicates poor prognosis and warrants
haematopoietic SCT [111]. A simple multiplex assay
distinguishing between the transcript variants has been
described recently [112]. APL (acute promyelocytic
leukaemia) is characterized by a reciprocal translocation
between chromosomes 15 and 17, resulting in the
creation of a hybrid gene (PML/RAR) that is thought
to mediate leukaemogenesis. A multiplex qRT-PCR
assay has been designed that is capable of quantifying
and simultaneously identifying transcript variants. Three
different PML/RAR fusion transcripts forms have been
identified in APL and a treatment response may depend
upon which fusion transcript form they express [113].

Disease-associated detection
In contrast with haematological malignancies, solid
tumours are not characterized by universal molecular
markers. Nevertheless, ‘molecular staging’ using RT-PCR
to amplify tissue-specific mRNA has long been viewed
as a possible solution for increasing the accuracy of post-
operative staging and has been evaluated extensively in
the molecular assessment of tumour stage and disease
recurrence [114,115]. However, there are significant
technical and conceptual limitations [116,117] that hold
back its adaptation into clinical practice [118] and it
continues to constitute a ‘proof of principle’ rather than
robust and reliable clinical assay [119]. The introduc-
tion of significant variability by the RT step makes it
problematic to delineate universal biologically relevant
quantitative ‘cut-off’ points [10] and the lack of stan-
dardized protocols results in lack of reproducibility
between laboratories [120]. However, most crucially,
there are no disease-specific markers uniquely associated
with any solid cancer. Hence the use of tissue-specific
markers, which are presumed to detect the presence of
cancer cells in patients’ blood, bone marrow or LN
(lymph nodes). Unfortunately, it is unclear just how
tissue-specific these markers are [116].

Colorectal cancer provides a good paradigm of the dif-
ficulties encountered when attempting to use molecular
techniques as diagnostic assays [119]. Although the detec-
tion of tumour invasion in draining LN by histo-
pathological staging is a poor prognostic factor, there
is considerable prognostic heterogeneity within each
tumour stage [121]. Achieving accurate stratification of
individuals into prognostic groups within a given stage
is assuming increasing importance with the recent
emergence of more effective adjuvant chemotherapy
protocols that have had a positive impact on patient
survival [122].

There have been numerous studies reporting the detec-
tion of mRNA markers such as CEA (carcinoembryonic
antigen), cytokeratins (ck), mucins, CD44 and GCC
(guanylate cyclase C) in different tissue compartments
and attempting to assess their prognostic significance
[123]. One report [124] suggests that it is possible to
distinguish histologically positive LN from histologically
negative ones by counting the number of CEA-expressing
cells. However, there was significant overlap between the
two groups and cell numbers were calculated relative
to a CEA-expressing cell line, ignoring inter-sample or
inter-patient variation of CEA mRNA levels. A second
study [125] calculated CEA copy numbers in LN relative
to 18S RNA levels, and used cut-off levels to suggest that
high CEA mRNA levels might be predictive of distant
recurrence. A third study [126] also concluded that
quantification of CEA mRNA levels in LN from patients
with advanced colorectal cancer yielded prognostic in-
formation. Unfortunately, quantifying the amount of
an mRNA value does not allow the calculation of the
number of circulating tumour cells, since the expression
of most genes varies by several orders of magnitude
between tumours in different individuals and often varies
in the tumour of the same individual [127]. Also, none
of these authors discussed how to implement a relative
quantification assay in practice.

In complete contrast, studies using both conventional
[128] and real-time [116] RT-PCR reported the detection
of CEA mRNA in up to 85 % of control LN, with
significant overlap of CEA copy numbers between histo-
logically involved and uninvolved LN. There was no
correlation between CEA copy numbers and prognosis,
suggesting that a CEA-based assay is unable to identify
patients at risk of distant disease recurrence. At least
there is a rationale for attempting to detect occult disease
in LN: histological detection of occult disease during
staging is an important prognostic indicator. This is not
the case for blood. Nevertheless, some reports suggest
that CEA mRNA levels in the blood of colorectal cancer
patients are associated with disease stage [129] and
may be of prognostic value [130,131]. These contrast
with others that question its specificity and suggest
that peripheral blood is not a suitable compartment for
detection of tumour cells [117,120,128,132], or advocate
analysis of yet another tissue compartment [133]. Similar
contradictory results have been reported for other tissue-
specific markers [119]. This discordance is typical and,
when results are analysed in detail, there is little agreement
on the specificity of the various markers, and there is a
significant percentage of patients that test positive for
the marker in question, yet survive for 5 years, or do
not test positive for the marker, yet die within 5 years
[116,117]. Characteristically, the usual conclusion is that
the respective markers have not yet been evaluated
sufficiently to recommend their inclusion in a clinical
assay [134]. This is not surprising when considering
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that blood, bone marrow or LN sampling represents a
single snapshot of a complex and dynamic process and
that few of the large number of cancer cells shed from
a primary tumour ever form metastatic tumours [135].
Consequently, despite this vast effort, PCR-based tech-
niques have still not been validated clinically in prospec-
tive studies and the presence of circulating tumour cells
cannot be considered a reliable prognostic indicator.

This suggests a conceptual flaw underlying the
attempts to use RT-PCR assays to allow prediction of
successful distant metastasis, as it is based on a simplistic
view of the biology and kinetics of tumour cell traffic
through the lymphatic and systemic circulation and sub-
sequent metastasis development. Instead RT-PCR may
simply be detecting cells of no biological significance
[136] and variability in survival within each staging
category probably reflects not only the inaccuracy of
detecting occult residual disease, but also a lack of under-
standing of the sequestration, release and subsequent
trafficking of the tumour cell in both the lymphatic
and systemic circulation. None of the qRT-PCR assays
address the question of the biological relevance of
detecting tumour cells in blood or LN and do not provide
any information about their metastatic potential or take
into account the role of patient genotype in allowing or
suppressing metastasis. Animal models suggest that only
0.01 % of cells circulating in the blood ultimately develop
into a metastatic site [137], and in humans the likelihood
of tumour cells seeding to become metastases is also very
low [138]. Furthermore, the genotype of LN metastases
differs from that of the main clone in the primary
tumour in >50 % of patients, with a significant minority
displaying a genotype not detected in the primary tumour
at all [138]. In addition, humans themselves are genetically
polymorphic, and the outcome of metastasis depends on
the interplay of tumour cells with various host factors,
including the organ microenvironment, which can in-
fluence the biology of cancer growth, angiogenesis and
metastasis [139]. Therefore it is not surprising that the
detection of occult disease is unlikely to have prognostic
value.

RT-PCR-ASSOCIATED PROBLEMS

There are several technical causes that can result in
ambiguous data, especially when targeting disease-associ-
ated markers [11].

RNA purification
Clinical samples from which RNA is extracted tend to
be disparate and include blood and other body fluids as
well as solid biopsies obtained during endoscopy, post-
surgery, post-mortem and from archival materials.
Naked RNA is extremely susceptible to degradation by
endogenous RNases (ribonucleases) that are present in all

living cells. Therefore the key to the successful isolation
of high-quality RNA and to the reliable and meaningful
comparison of qRT-PCR data is to ensure that neither
endogenous nor exogenous RNases are introduced
during the extraction procedure [140].

Recent reports suggest that RNA extracted from FFPE
(formalin-fixed paraffin-embedded) archival materials
can be successfully quantified by qRT-PCR assays. Be-
tween 60 % [141] and 84 % (100 % of samples less than
10 years old) [142] of templates can be amplified by
RT-PCR, and it is possible to quantify mRNA ex-
pression levels [143]. Formalin-fixed tissues are ideal for
retrospective clinical studies of disease mechanisms and,
as the use of PCR technology has become more common
in molecular testing, it has enhanced the clinical utility
of these tissues. This is important, since such studies
have the potential to enable the correlation of mol-
ecular findings with the patient’s response to treatment
and eventual clinical outcome. qRT-PCR assays, with
their amplicon lengths of below 100 bp, are ideally placed
to amplify the usually degraded RNA from these archival
samples whose average size is 200–250 nucleotides. How-
ever, care must be taken when interpreting the results
obtained from archival material, as gene expression
profiles from FFPE samples do not correlate exactly with
the profiles generated from the corresponding frozen
samples (r2 = 0.69) [144]. The same authors report that,
although 64 genes were differentially expressed in match-
ing fresh-frozen normal colon and cancer samples, only
38 were in the corresponding FFPE samples. Further-
more, only 28 of these genes were in common. Thus
any results obtained using FFPE samples require inde-
pendent experimental determination [145], but also may
underestimate or report misleading changes in gene
expression patterns.

cDNA synthesis
Priming of the cDNA reaction from the RNA template
can be carried out using random primers, oligo(dT), a
mixture of both or target-specific primers. The choice of
primer can cause marked variation in calculated mRNA
copy numbers [146] and results obtained using the differ-
ent methods are not comparable [147]. It is also little
appreciated that cDNA synthesis can be primed ef-
ficiently without addition of any primer at all [148].

Random primers
This method yields the most cDNA but, since transcripts
originate from multiple points along the transcript, more
than one cDNA transcript is produced per original target.
Furthermore, the majority of cDNA synthesized from
total RNA will be ribosomal RNA-derived and may
compete with a target that is present at very low levels. As
the Tm of random primers is low, they cannot be used with
thermostable RT enzymes without a low temperature
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pre-incubation step. This is the least satisfactory method
of synthesizing cDNA.

oligo(dT)
cDNA synthesis using oligo(dT) is more specific than
random priming, as it will not result in the priming from
rRNA. It is the best method to use when the aim is to
obtain a faithful cDNA representation of the mRNA
pool, although it will not prime any RNAs that lack
a polyA+ (polyadenylated) tail. In addition, oligo(dT)
priming requires very high-quality RNA that is full-
length, and hence is not a good choice for priming from
RNA that is likely to be fragmented, such as that obtained
from FFPE archival material. Furthermore, the RT may
fail to reach the primer/probe-binding site if secondary
structures exist or if the primer/probe-binding site is at
the extreme 5′ end of a long mRNA. It is possible to
mix random primers and oligo(dT); however, this may
exacerbate the problems of accurate quantification, as the
variable priming of the random oligonucleotides is likely
to introduce variability.

Target-specific primers
Target-specific primers synthesize the most specific
cDNA and provide the most sensitive method of quanti-
fication [149]. Their main disadvantage is that they
require separate priming reactions for each target, which
is wasteful if only limited amounts of RNA are available.

Inhibitors
The co-purification of inhibitors of the RT-PCR during
template preparation can present a serious problem to
accurate and reproducible quantification of mRNA levels
[150]. Common inhibitors include various components
of body fluids and reagents encountered in clinical
and forensic science (e.g. haemoglobin and urea), food
constituents (e.g. organic and phenolic compounds,
and fats) and environmental compounds (e.g. humic
acids and heavy metals) [151]. In addition, factors
such as DNA fragmentation [152] and the presence of
residual anticoagulant heparin [153] or proteinase K-
digested haem compounds such as haemoglobin [154]
will negatively affect PCR efficiency. The problem with
this type of inhibitor is that it makes the comparison
of qRT-PCR results from different patients or different
samples from the same patient impossible as it results in
different amplification efficiencies and hence Ct values
of the same target from different patients. Worryingly,
laboratory plasticware has been identified as one potential
source of PCR inhibitors [155]. It is also important to
remember that reagents can have a significant effect on
assay reproducibility, with lot-to-lot variation an essen-
tial consideration [156]. Different polymerases display
variable sensitivity to the presence of inhibitors such as
blood, ions or biological samples [157–159]. Thus the
PCR-inhibiting effect of various components in bio-

logical samples can, to some extent, be eliminated by the
use of the appropriate thermostable DNA polymerase.

Other considerations
The variability of RT-PCR results obtained from identical
samples assayed in different laboratories continues to be
a problem [160]. The single most likely source of data
variation is due to variability introduced by the person
carrying out the experiment. Since there are so many steps
involved in going from a tissue sample to a quantitative
result, it is not surprising that this is so. Other sources of
variability are the reagents, especially the probe and RT,
and it is essential to include appropriate controls with
every run.

The recent introduction of robots capable of extracting
RNA from tissue samples and pipetting very small
volumes promises to address two bottlenecks, those of
template preparation and the dispensing of reagents. It
should also reduce the variability and contamination
observed when different operators prepare multiple
templates [161].

SUMMARY AND CONCLUSION

Some technologies arrive at a time that is ‘just right’,
and advances in chemistries and instrumentation make
qRT-PCR a technology whose time has come [162].
This is reflected in the increasingly important role it
plays in clinical diagnosis, in particular when used for
the assessment of viral load and the analysis of disease-
specific translocation products in haematological ma-
lignancies. It is also clear that appropriate application,
quality control and standardization are issues that must
be addressed and it is vital to consider each stage of the
experimental protocol, starting with the laboratory set-
up, proceeding through sample acquisition and template
preparation, and the RT and PCR steps. Only if every
one of these stages is properly validated is it possible
to obtain reliable quantitative data. Of course, choice of
chemistries, primers and probes, and instruments must
be appropriate to whatever is being quantified. Finally,
data must be interpreted, and this remains a real problem.
Significant technical problems remain, mainly associated
with the conversion into cDNA and subsequent am-
plification of the RNA template.

These problems hint at a next generation of assays that
address the problems that are inherent to any RT-PCR.
Developments in microfluidics are already allowing
the amplification of target nucleic acid from nanolitres
of sample [163]. However, the ideal assay would
eliminate the need to amplify a target and it is likely that
real-time RT-PCR will eventually be replaced by methods
capable of direct analysis of single biological molecules.
One such single-molecule fluorescence detection tech-
nology is fluorescence correlation spectroscopy, which

C© 2005 The Biochemical Society



qRT-PCR and its potential use in clinical diagnosis 375

detects expression by hybridizing two dye-labelled DNA
probes to a selected target molecule, which can be either
DNA or RNA in solution. The subsequent dual-colour
cross-correlation analysis allows the quantification of
the biomolecule of interest in absolute numbers down
to target concentrations of less than 10−12 M [164].
Combined with single molecule sequencing [165], this
will eventually permit RNA identification as well as
distortion-free quantification. That is the future. For now,
qRT-PCR assays, when carried out appropriately, are the
method of choice for RNA detection and quantification.
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