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Abstract

Collaborative filtering attempts to alleviate in-
formation overload by offering recommendations
on whether information is valuable based on
the opinions of those who have already evalu-
ated it. Usenet news is an information source
whose value is being severely diminished by the
volume of low-quality and uninteresting infor-
mation posted in its newsgroups. The Grou-
pLens system applies collaborative filtering to
Usenet news to demonstrate how we can restore
the value of Usenet news by sharing our judge-
ments of articles, with our identities protected
by pseudonyms.

This paper extends the original GroupLens
work by reporting on a significantly enhanced
system and the results of a seven week trial with
250 users and over 20,000 news articles. Grou-
pLens has an open and flexible architecture that
allows easy integration of new newsreader clients
and ratings bureaus. We show ratings and pre-
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diction profiles for three newsgroups, and assess
the accuracy of the predictions.

1 The Problem with Usenet
Today

1.1 Problem Statement

The information super-highway promises to de-
liver more information more rapidly than was
ever before possible. However, many of us are
already overwhelmed with the amount of infor-
mation we must process each day. The prob-
lem of information overload leaves us unable to
keep up with the information we need. To long-
time readers of Usenet news this problem is es-
pecially evident and has caused many users to
abandon Usenet altogether. How did we get into
this predicament?

The Internet was born in the 1970’s by a
group of like-minded scientists who used the net
primarily to serve the interests of research and
academia. This community of on-line pioneers
thrived for about 20 years until the rush to the



net began in the early 1990s. With this rush
came millions of new users with interests that
went way beyond the research questions that tied
the early community together. Not only did the
new users increase the volume of information on
the net, they fundamentally changed the culture.
What once felt like a small community now feels
like a loud impersonal city.

The current estimate of Usenet volume is 21
million users posting 130,000 articles per day.
This is up from an estimate of 10,000 articles
per day in January 1994. The growth of the Web
is even more phenomenal with current estimates
that the the size is doubling every 4 months, in
terms of both traffic and the number of sites.

The GroupLens project seeks to alleviate the
problem of information overload by applying col-
laborative filtering techniques to Usenet news
and other Internet resources. In so doing we
hope to help restore order to Usenet, and build a
renewed sense of community. In an earlier paper
[10] we reported on the initial GroupLens archi-
tecture and a small scale pilot test with approx-
imately 12 participants at our local universities.
In this paper we report on the new GroupLens
architecture, including the newly published open
protocols, and a larger scale Internet wide user
test involving more than 250 participants and
tens of thousands of ratings. The next sections
describe some of the past and current strate-
gies for fixing Usenet. Section 2 presents the
GroupLens server architecture. Section 3 dis-
cusses the client library and the adaptation of
newsreaders to support GroupLens. Section 4
presents data gathered and lessons learned from
the seven week user trial, and section 5 discusses
future work and presents some conclusions.

1.2 Non-collaborative Solutions

Since the early days of Usenet people have tried
to find ways to reduce the number of messages
they must process each day. In this section we
consider non-collaborative solutions, which are
solutions that use only information from a single
user. Some of the earliest non-collaborative tech-
niques relied on matching keywords in the header
fields of the news articles. Later, more sophis-
ticated keyword matching techniques emerged
that applied techniques from information re-
trieval.

Kill files / Score files One of the first meth-
ods introduced to the Usenet community to re-
duce the noise level was the killfile. Recently
scorefiles have been introduced as a more general
mechanism. A killfile allows a user to specify cer-
tain subjects or authors that he never wants to
see, while a scorefile allows the user to give in-
teresting subjects and authors high scores and
uninteresting subjects and authors low scores
[5]. The problem with these techniques is their
Not all articles containing a de-
sired keyword are interesting, and even gener-
ally poor writers occasionally produce an article
worth reading. Additionally, keywords are dif-
ficult to identify in the presence of aliases, syn-
onyms and misspelled words.

coarseness.

Moderated Newsgroups Another approach
to reducing the noise level on Usenet is the
creation of moderated newsgroups. In a mod-
erated newsgroup one person, the moderator,
must approve each article before it is distributed
throughout Usenet. The moderator is respon-
sible for rejecting articles that are off-topic, in-
flammatory, or generally of poor quality. The
problem with moderated groups is that they re-



quire a large time commitment from the mod-
erator, and the quality judgment is left up to a
single person.

Programmable Agents
agents are simple programs that perform actions
on behalf of users. Programmable agents have
been used in information filtering to prioritize
messages, gather messages into folders by key-
word, or even reply to messages. For instance,
the Information Lens system enables even
unsophisticated users to automatically perform
actions in response to messages [6]. Object Lens
extends the Information Lens to other domains,
including databases and hypertext [3].

Programmable

Intelligent Agents The July 1994 issue of
Communications of the ACM is devoted to the
state of the art in intelligent agent research. This
issue includes discussions of several agents de-
signed to reduce information overload. [4]. The
agents address meeting scheduling, email han-
dling, and netnews filtering. The netnews agent
is known as NewT [14]. A user trains NewT by
showing it examples of articles that should and
should not be selected. The agent performs a full
text analysis of the article using the vector-space
model [11]. Once the agent has gone through ini-
tial training it starts making recommendations
to, and accepting feedback from the user. Based
on user feedback NewT is able to make weighted
judgments about news articles containing key-
words. Intelligent agents for information filter-
ing suffer from the same drawbacks as keyword
based techniques. An additional problem is that
agents must be trained. Norman points out in [9]
that interaction with and instruction of agents is
a difficult problem that has not been solved sat-
isfactorily.

1.3 Collaborative Solutions

Collaborative filtering systems make use of the
reactions and opinions of people that have al-
ready seen a piece of information to make predic-
tions about the value of that piece of information
for people who have not yet seen it. Collabora-
tive filtering is already used heavily in informal
ways. Users regularly forward articles, or refer-
ences to articles, to their friends and colleagues
with the explicit or implicit message: “You will
like this.” Collaborative filtering systems att-
tempt to formalize this process to more effec-
tively incorporate a larger set of users and data.
The utility of collaborative filtering extends be-
yond the domain of Usenet news into the realm
of movies, videos [2], and audio CDs [13].

Usenet represents a uniquely challenging prob-
lem for a collaborative filtering system because of
the sheer volume of information items for which
ratings must be collected and predictions calcu-
lated. The 130,000 new messages produced on
Usenet each day dwarfs the number of new CDs
and movies produced in an entire year.

Tapestry The Tapestry system [1] is an early
collaborative filtering system designed to help
small groups of people work together to solve
the information overload problem. Tapestry
makes sophisticated use of subjective evalua-
tions. It allows filtering of all incoming informa-
tion streams, including email and Usenet news.
Many people can post evaluations and users can
choose which evaluators to pay attention to. The
evaluations can contain text, not just a numeric
rating or boolean accept/reject. In the Tapestry
system users can combine keyword criteria, along
with subjective criteria to form requests. An ex-
ample request might be “Give me all the articles
containing the word collaborative that Pat has



evaluated and where the evaluation contains the
word ezcellent.” Tapestry works well in a close-
knit community with common interests. Grou-
pLens extends the concepts in Tapestry system
in two ways. First, GroupLens provides predic-
tions based on the aggregation of ratings entered
by other users. Second, GroupLens does not re-
quire the user to know whose evaluations to use
in advance.

NoCeM NoCeM (no see ’em) is a system that
makes it possible for anyone to attempt to can-
cel an article that is widely cross-posted or seen
as a blatantly commercial posting. Under the
NoCeM model, any person on the net who sees
something they think shouldn’t have been posted
can issue a NoCeM notice. However, just as with
any other type of Usenet message, the weight
the notice carries will be no greater than the
poster’s net.reputation. If people agree with the
issuer’s criteria and also feel that this person is
a good judge of that standard then they will ac-
cept his/her notices. When a NoCeM notice is
accepted by a user it will typically mark the mes-
sage as read in the user’s newsrc file. NoCeM
notices could instead be used to remove the mes-
sage from the local spool, thus keeping all users
on the local system from seeing the article.

1.4 The GroupLens Approach

GroupLens is a collaborative filtering system for
Usenet news. The aim of GroupLens is to help
people work together to find articles they will
like in the huge stream of available Usenet arti-
cles. In effect, GroupLens automatically selects
for you a group of people to act as your personal
moderators for a given newsgroup. These mod-
erators are selected by finding people with whom
you have had substantial agreement on past ar-

ticles. Users can ensure their privacy by entering
ratings under pseudonyms without reducing the
effectiveness of the predictions.

Usenet news readers can take advantage of
GroupLens by reading news with a GroupLens-
aware news client. We provide several clients and
make a library available for newsreader authors
who want to make their newsreaders GroupLens-
aware. An example client is shown in figure
1. The newsreader connects to the user’s lo-
cal NNTP server to retrieve Usenet news arti-
cles, and it also connects with the GroupLens
server to share filtering information. Whenever
the user fetches articles from a newsgroup, the
news reader sends a message to the GroupLens
server requesting predictions of how the user will
value each article. Those predictions are dis-
played alongside the article titles as a bar. When
reading news articles, the user may enter ratings
of the actual value of each article. Those ratings
are sent back to the GroupLens server to serve
as input for other users’ predictions and to up-
date the correlations between this user and other
users. The more one uses the system, the more
data there is upon which to base predictions.

We believe that GroupLens provides the best
opportunity for managing the overwhelming
amount of data in Usenet news. In addition
to the general benefits of collaborative filtering
over non-collaborative solutions, GroupLens has
a scalable open architecture that can support a
large number of users and data elements. The
GroupLens architecture also can support a va-
riety of algorithms for collaborative filtering, al-
lowing system designers to trade off between effi-
ciency of calculation, storage requirements, and
the degree of personalization of predictions.



File Edit Apps Options Buffers Tools Article Threads Misc Post Score Mailcrypt Help

15

B[S

227
i

BB I[ 55: Art Poe ] Quiche Lorraine

[EETETd I[ 123: Art Poe ] COLLECTION (4) FPersimmon Desserts

| #un Il 97: Art Poe ] COLLECTION (2} Brioche

| MA Il 58: Art Poe ] Corn Tortillas

| NA I[ 46: Art Foe ] Flour Tortillas

| s I[ 40: Robyn Walton ] #Czechoslovaklan Cakbbage Soup

K:1:1: Il 57: Robun Lalton 1 Collection (23 Rice Puddin — a4
—- Gnus rec.food.recipes/17026 {143 more} 1:48pm (Sunmary
From: The Ripper <{ripper@Onramp,NET> A

Subject: Popeye’s Famous Fried Chicken
Mewsgroups: rec.food.recipes

Date: 1 Jan 1995 07:23:51 -0700
Organization: Onramp

Reply-To: The Ripper <ripperBOnramp.NET>
Followup-Te: rec.food.cooking

>From the book written by Todd Wilbur.

6 cups wvegetable oil

2/3 cup all-purpose flour

thls salt

thls white pepper

tsp cayenne pepper

tsp paprika

eggs

frying chicken w/skin, cut up

LSS

Heat the oil owver medium heat in a deep fryer or in a wide, deep pan

on the stove. In a large, shallow bowl, combine the flour, =salt, peppers,
and paprika. Break the eggs into a separate shallow bowl and beat

until blended. Check the oil by dropping in a pinch of the flour mixture.
If the oil bubbles rapidly around the flour, it is ready. Dip each piece of
chicken into the eggs, then coat generously with the flour mixture.

Orop each piece into the hot oil and fry for 15 to 25 minutes, or until

it is a dark golden brown. Remove the chicken to paper towels or a rack

tn drain. 4
—- Gnus rec.food.recipes/17026 Popeye’'s Famous Fried Chickenl:48pm (Articie |

Figure 1: The GNUS newsreader with GroupLens predictions
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2 The GroupLens Architecture

2.1 Overview

At the heart of GroupLens lies the GroupLens
Ratings Bureau (GLRB) which functions as a re-
quest broker for the distributed collaborative fil-
tering engine. To implement the request broker
we have adopted a “process pool” model that al-
lows the GLRB to identify incoming requests and
hand them off to the appropriate background
daemon. To keep the number of network con-
nections low we have adopted a virtual session
model for each client connection. Once a client
as logged in the client is given a session token
that is valid until the client logs out or becomes
inactive.

In figure 2 we see two newsreading clients in
different stages of communication with Grou-
pLens. The tin client is in the process of estab-
lishing a connection with the GLRB; its request
has not yet been determined. On the other hand
the GLRB has already assigned the xrn client to
the appropriate prediction daemon.

The filtering engine contains four primary
modules. A prediction module, a ratings mod-
ule, a correlation module, and a data manage-
The GroupLens architecture is
open, and the modules communicate with each
other through a well defined protocol. This al-
lows any of the modules to be replaced by a func-
tionally equivalent module so long as the new one
conforms to the protocol.

The primary goal of the collaborative filtering
engine is to provide clients with accurate predic-
tions quickly. Predictions are calculated by one
of the daemons in the prediction daemon pool.
To calculate a prediction for an article the pre-
diction daemon requires two inputs: a measure

ment module.

of similarity between pairs of users, and ratings
for the article in question. The way in which
these two inputs are combined for each predic-
tion is described in [13, 10, 7]. Our performance
goal for the the prediction algorithm is to be able
to calculate and deliver 100 predictions in less
than two seconds. In practice we are able to de-
liver 100 predictions in 4.2 seconds on a Sparc 5
workstation with 32Mb memory, running Solaris
2.4.

Pairwise similarity between users is deter-
mined by the correlation program. Similarity be-
tween two users is determined by how they have
rated articles in the past. Because user’s cor-
relations change relatively slowly, and because
newsreading tends to be a daily activity, the cor-
relation program is run once a day.

Ratings for Usenet articles are received in
batches from the newsreader client as defined by
the GroupLens protocol. It is the responsibil-
ity of the ratings daemon to receive ratings from
the clients as fast as possible and to ensure that
the ratings are eventually stored in the ratings
database. Our performance goal for ratings is
to be able to accept 100 ratings in less than 1
second. In practice we are able to accept 100
ratings in less than 0.5 seconds.

The data management subsystem is respon-
sible for maintaining both the ratings and cor-
relations databases. Logically you can think
of the ratings database as a large matrix or-
ganized with message-ids indexing the columns,
and pseudonyms indexing the rows. The cur-
rent database for the rec.humor newsgroup has
20,837 columns and 74 rows for a total of
1,541,938 cells. However, only 30,537 or 0.01%
of these cells are occupied. We have devised a
storage mechanism that minimizes access time
for an individual cell, and minimizes the space
required to store the matrix.



We have designed our data management in-
terface so that we can plug in one of several
DBMSs on the back end, while maintaining a
consistent interface on the front. Currently we
support three back ends: gdbm [8], Illustra, and
OBST.

2.2 Protocol

The glue that ties all of the modules together,
and allows the newsreading clients to talk to the
GLRB and other modules, is the GroupLens pro-
tocol. The protocol consists of five major com-
mands. We’ll give a brief overview of the major
commands here. The details of the protocol are
available on-line [15].

Three key concepts in the protocol are
pseudonyms, tokens, and  message-ids.
Pseudonyms are the secret identifiers se-
lected by users to identify themselves to the
GroupLens system while maintaining their
privacy. Tokens are integers returned from the
server to represent the state of a logged in user.
The server maintains just enough state for each
token so the user does not have to authenticate
herself each time she requests predictions or
submits ratings. The server discards tokens
after a timeout period. Message-ids are used by
the clients to identify items they wish to rate or
get predictions for. Message-ids in the Usenet
trial are the standard Usenet message identifiers
used by news clients to identify messages to the
news server.

Register In figure 2 we see a World Wide Web
client talking to the GLRB from the Grou-
pLens Registration page. The format of a
register command is register pseudonym.
When the GLRB receives a register com-
mand, it checks the user database to make

sure that the given pseudonym does not al-
ready exist.

Login The format of the login command is
login pseudonym. When a login request
is received the GLRB checks to see if the
pseudonym is valid. If the pseudonym is
valid the client is given a session token. To
increase security a password may be option-
ally supplied as part of the login command.

Logout The format of the logout command is
logout token. When a logout command is
received the token is removed from the list
of active tokens, and the token number is
invalidated. Any future requests using this
token number will be refused.

GetPredictions The format of the getpredic-
tions command is getpredictions token
newsgroup, followed by a list of Usenet
message-ids. When the GLRB sees that
the request is getpredictions it validates
the token and newsgroup name, and then
passes the request to a free prediction dae-
mon. The prediction daemon reads the list
of message-ids and returns either a predic-
tion or a keyword indicating no prediction
for each message-id.

PutRatings The format of the putratings com-
mand is putratings token newsgroup,
followed by a list of tuples that contain the
message-id and rating. The ratings daemon
simply reads the list of tuples and informs
the client that it has received them. When
it has time, the ratings daemon writes the
list to the database.



2.3 Privacy

Privacy is an important issue in a large scale
collaborative filtering system. There are three
ways to handle user privacy issues in a collabora-
tive filtering system. First, users may be anony-
mous so that ratings are submitted without any
user identification. When ratings are submit-
ted anonymously, the only operations the sys-
tem can perform are aggregate operations such
as the average rating [7]. Second, users may
be known to all other users. In this case the
ratings are closely associated with the reputa-
tion of the rater, and users seeking recommen-
dations or predictions may specify which other
users to use in generating predictions [1]. This
option requires users to give up the privacy of
their ratings. The third option, employed by
GroupLens, uses pseudonyms to uniquely iden-
tify every user. Using pseudonyms allows ratings
to be associated with a user, and allows predic-
tions to be customized for users based on their
correlation with other pseudonyms. In Grou-
pLens, pseudonyms and their associated rat-
ings are publicly available. However, we do not
associate these pseudonyms with a user’s real
identity and we use an authentication protocol
[12] that prevents a user from using another’s
pseudonym.

3 Filtering Clients

3.1 News Readers

The primary user interface for the GroupLens
system is a set of newsreaders that are adapted
to use the GroupLens server as well as the local
NNTP server. We currently support three Unix-
based newsreaders: xrn, tin, and gnus. We are
in the process of adapting newsreaders for the

PC and Macintosh platforms.

To simplify the process of adapting newsread-
ers, we have implemented and freely provide a
GroupLens client library. This library handles
all GroupLens server communication, manages
local configuration files, and provides data struc-
tures to simplify the integration of ratings and
predictions into an existing news reader. When
using the library, the newsreader author is freed
from the details of logging into the GroupLens
server and maintaining a token, and from the
details of the GroupLens protocol.

Adapting a newsreader to use GroupLens in-
volves three steps:

1. Passing the set of article IDs to the client li-
brary (to retrieve predictions) when retriev-
ing article headers for a newsgroup.

2. Recording article information, including
user ratings, in the GroupLens article ta-
ble, and calling the library routine to submit
these ratings after finishing each newsgroup.

3. Defining a user interface for displaying pre-
dictions (some support is in the library) and
for receiving ratings from users.

Our experience modifying newsreaders has
shown that the interface changes are the hard-
est part of the process. Many newsreaders use
nearly every key on the keyboard, and con-
sequently require creative interface design to
maintain a consistent interface. While display-
ing predictions was somewhat simpler, we have
found that some news reading models are not
as amenable to selection by title and prediction,
and accordingly plan to investigate methods for
providing summary predictions for threads (per-
haps at the client interface).



We were able to add GroupLens support to
xrn with less than 1000 additional lines of code.
These lines represent less than 3% of the total
xrn source code.

3.2 Filter Bots

We use the name filter-bot to refer to sim-
ple filter programs that algorithmically (“robot-
ically”) supply useful information to a filtering
system. In GroupLens, a filter-bot is a program
that assigns a rating to a Usenet article based
on some simple computable criteria. Filter-bots
are implemented using the client library and en-
ter ratings under their own unique pseudonyms.
This allows real users to weigh the ratings of the
filter-bots along with ratings from other users.
Examples of filter-bots we have implemented in-
clude an article length filter-bot and an exces-
sive quoted text filter-bot. We intend to imple-
ment several more including a reading level filter-
bot!, a prolific author filter-bot, and an excessive
cross-posting filter-bot.

Filter-bots measure syntactic features of ar-
ticles, providing additional ratings with which
users can correlate, potentially improving pre-
dictions. Filter-bots facilitate incorporating new
information filtering algorithms into the Grou-
pLens architecture. Filter-bots also mitigate the
first rater problem, which stems from the fact
that in order to compute a prediction for an ar-
ticle at least one previous rating must be avail-
able. Filter-bot ratings for an article can be com-
puted immediately, so they are always available
for users.

'A reading level filter-bot rates articles according to
the minimum grade level for which the vocabulary and
sentence structure would be appropriate.

4 Experiences

We now turn to the results of a user trial
we conducted to test the GroupLens archi-
tecture.  The user trial began February 8,
1996 when we posted an announcement to the
comp.os.linux.announce newsgroup. In order
to participate in the trial, users had to be
willing to use one of the newsreaders that had
been enhanced with GroupLens support. The
newsreaders available were gnus-5.1 (for emacs),
tin, and xrn. Participants also had to be willing
to read and rate articles in one of our supported
newsgroups. The groups supported for the trial
included the entire comp.os.linux hierarchy,
rec.humor, rec.food.recipes, comp.lang.c++,
comp.lang.java, and rec.arts.movies.current-
films. Participants were told to rate articles
according to the following definitions:

1. This article is really bad! a waste of

net.bandwidth.
2. This article is bad.
This article is neither good nor bad.

This article is good.

AN

This article is great, I would like to see more
like it.

Through the first seven weeks of the trial,
we had 250 users register to use GroupLens.
The total number of ratings received during the
seven week period was 47,569. These ratings
are spread over a total of 22,862 distinct mes-
sages. Over the same seven week period Grou-
pLens provided over 600,000 predictions to users.
This ratio of ratings to predictions is appropri-
ate for a noisy domain like Usenet news, since
it suggests that ratings help users choose which
items to review.

10



In the next two sections we take a look at the
general question, “does it work?” We’ll look at
this question from two perspectives: First, do
the predictions accurately reflect what the user
rated the article? Second, do users find the pre-
dictions useful, and do they believe them? We
used data collected from the earlier GroupLens
trial [10] to develop prediction algorithms, and
evaluated the performance of the prediction al-
gorithms based on the data from the present
trial. The algorithms were not changed during
this trial.

4.1 Accuracy of Predictions

Our experience has shown that the predic-
tion program behaves differently for differ-
ent newsgroups. To study this point,
will examine the accuracy of the predic-
tion program for three representative news-
groups. rec.humor, rec.food.recipes, and
comp.os.linux.development .apps

we

For each of the newsgroups we will compare
the accuracy of predictions for two different ways
of calculating the predictions. We will calculate
a personalized prediction for each user for each
article using the Pearson coefficient as a similar-
ity measure between users, as described in [10].
For comparison we will calculate the average rat-
ing entered for each article. We compare each
prediction against the actual ratings entered by
the users. It is useful to look at the average be-
cause it is fast to calculate and requires very lit-
tle storage. On the other hand, the average does
not allow for any personalization of the ratings.

The metrics we will use to measure the accu-
racy of the algorithms include the mean squared
error E2; The mean absolute error |E|; the stan-
dard deviation, o, of |E|; and the Pearson corre-
lation coefficient r between ratings and predic-

11

tions.

To measure the mean absolute error we take
the absolute value of the difference between the
actual rating entered by the user and the pre-
diction computed by the algorithm for each rat-
ing/prediction pair, and compute the mean of all
of the differences. The lower the mean absolute
error, the better the algorithm. The standard
deviation of the error is a measure of how con-
sistently accurate the algorithm is. One prob-
lem with using the mean absolute error is that
it does not sufficiently penalize algorithms that
make large errors. The mean squared error, like
least squares regression, disproportionately pe-
nalizes algorithms that make large errors more
than small. We want to penalize large errors be-
cause users probably don’t distinguish between
a prediction of 1.5 and 2.0. On the other hand,
users will notice if an algorithm predicts some-
thing to be a 4.0 that should really be 2.0.

As mentioned in section 2, the prediction al-
gorithm requires a measure of similarity between
pairs of users (correlation), and ratings. The na-
ture of the newsgroup appears to have an effect
both of these factors. In figure 3 we show the
rating profiles for all groups combined, and for
the three newsgroups.

In rec.humor, 83% of the ratings are 1 or
2. This reflects the paucity of funny articles
and the overabundance of name-calling, laming,
and completely silly discussions of World War
I1. Rec.humor is a good example of a newsgroup
where there is a clear metric for determining a
rating: “Is it funny?” The fact that there is a
clear metric for judging each article, and the fact
that there is so much noise leads to a high level
of correlation between pairs of users. This is il-
lustrated in figure 4 where we can see that most
pairs of users have a high positive correlation.

In table 1 we see the comparison between aver-
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method E?2 ||E| |o r
average 1.1 | 0.63 | 0.88 | 0.49
personalized | 0.94 | 0.67 | 0.68 | 0.62
all-ones 2.01 1 0.78 | 1.18 | NA

Table 1: Summary of Results in Rec.humor

age and personalized predictions for rec.humor.
Because there is such a high degree of correla-
tion between users, we see that the average is
slightly better than the personalized algorithm
in terms of the mean absolute error. One might
think that given the ratings profile for rec.humor
the best strategy to minimize error would be to
simply predict 1 for every article. The row called
“all-ones” in table 1 shows that this is not a good
strategy after all.

In comp.os.linux.development.system,
and rec.food.recipes we see that the ratings
are more evenly distributed (see figure 3).
Rec.food.recipes is a moderated newsgroup,
so all of the posts are on topic, and there is no
name calling or spamming. In addition users
once again have a clear metric for rating an
article: “Would I like to cook this?” However,
as figure 4 shows, users in rec.food.recipes
have a lower correlation. The reason for this
is that ratings are based literally on taste. For
example two users may agree all the time on
desert recipes, but one may be a vegetarian who
rates all recipes with meat low, and the other
may be a carnivore who rates recipes with meat
high.

In table 2 we summarize the results for
rec.food.recipes. We see that the errors
in this group are uniformly higher than for
rec.humor. This can be attributed to the fact
that the correlation between users is low for this
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newsgroup. However, we do see that the person-
alized predictions are better than average pre-
dictions for all of our error metrics.

E?

method |E| | o T
average 2.65 | 1.29 | 0.97 | 0.05
personalized | 1.94 | 1.09 | 0.86 | 0.33

Table 2: Summary of Results in Rec.food.recipes

Determining what to rate an article in
comp.os.linux.development.system is more
difficult than either of the two previous news-
groups. When rating an article in this group a
user must weigh several factors:

e Is the article appropriate for this news-
group?

e Is the topic of the article interesting to me?
e Is the article well written?
e [s the article factually correct?

Despite all of these factors the readers of
comp.os.linux.development.system have a
high degree of correlation. This may be because
the early adopters of the GroupLens system are
all likely to be fairly sophisticated linux users. In
table 3 we see that the personalized predictions
are again more accurate than the average.

method E2 ||E| |o T

average 1.28 | 0.78 | 0.82 | 0.41

personalized | 0.91 | 0.71 | 0.64 | 0.55
Table 3: Summary of Results in

Comp.os.linux.development.system



4.2 Effect of Predictions on Users

We’ll now look at what effect, if any, the predic-
tions have on a user’s likelihood to read and rate
a message. One result is clear: users are more
likely to rate messages if they see that they are
also getting predictions. Further, our analysis
of the rating patterns of users shows that users
are almost twice as likely to rate an article for
which they see a prediction greater than three
than they are for an article with a prediction of
three or less.

4.3 Bootstrapping

One rather important lesson that we have
learned over the course of this project is the dif-
ficulty of bootstrapping collaborative filtering in
Usenet newsgroups. While we expected some
inertia among users, and in particular recog-
nized the difficulty in asking users to upgrade or
change newsreaders, we were surprised by some
of the social difficulties involved in bringing col-
laborative filtering to Usenet news.
Collaborative filtering must have users to be
useful. In fact we believe that a collaborative fil-
tering system has built in incentives that encour-
age more people to participate. To ensure value
for trial users, we made an effort to add Grou-
pLens support for newsgroups slowly, and only
after ensuring that we had at least one or two
active reader /raters who would keep the group
going. We would then post a message to the
newsgroup itself, inviting others to use Grou-
pLens and pointing them to our web page for
registration and software. It was here that we
ran into a very tricky bootstrapping problem.
Discussing GroupLens was off-topic for almost
every newsgroup we encountered. Accordingly,
our messages were often ignored, and there was
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no follow-up discussion within the group. In ret-
rospect, this is not surprising. A posting about
a better way to read news is not funny (and
therefore does not belong in rec.humor), it is
not about linux software and development (and
therefore does not belong in comp.os.linux.*),
and similarly is out of place in the very news-
groups where we expected it to be useful. Few
Usenet news readers choose to read newsgroups
about reading news.

We did get a user base, albeit more slowly
than we would have liked. We have since rec-
ognized more effective ways of bootstrapping:
working more closely with newsreader maintain-
ers to become part of the standard distribution,
providing limited service for a wider range of
newsgroups to create more general interest, and
direct promotion through demonstrations and
other publicity.

5 Conclusions and Future

Work

The GroupLens trial has demonstrated the ef-
ficacy of collaborative filtering for Usenet news.
We have learned about the challenges of this vast
domain. Each newsgroup brings forward new
characteristics that affect the accuracy of our
predictions. The sheer volume of Usenet news
has forced us to have an efficient implementa-
tion. The numbers are in, and GroupLens pro-
vides value to participants. Anecdotal evidence
supports this conclusion as we hear from users
who long-ago abandoned the rec.humor news-
group returning to it with GroupLens guiding
them to a handful of funny articles in just a few
minutes each day. Still, our work is far from fin-
ished.

There are many areas of future work to reduce



the possible costs to users of using collaborative
filtering. These costs come in three forms: (i)
time spent entering a rating; (ii) performance
costs incurred by the GroupLens software; (iii)
the time wasted in reading articles that are pre-
dicted to be better than they really are.

One way of reducing the time spent entering a
rating is to rely on implicit measures of interest,
such as how long you spend reading an article, or
whether you print or file the article after reading
it. Collaborative filtering studies are needed to
compare the costs and benefits of explicit ratings
with implicit ratings.

Performance costs for the current GroupLens
system are low, but these costs increase with
the number of users. One way to keep perfor-
mance costs low is to develop distributed GLRBs
that perform correlation and prediction indepen-
dently on subsets of the user population. Scaling
GroupLens to the Internet will require distribu-
tion, to keep communication and computation
times.

Time wasted reading articles with high predic-
tions that are actually uninteresting is difficult
to control. In practice, predictions become in-
creasingly accurate as more readers rate the the
article. One way to make it easier for users to
use collaborative filtering to select quality arti-
cles would be to develop prediction algorithms
that include a confidence measure for the ac-
curacy of the prediction. Confidence measures
would help users make the tradeoff between op-
portunity cost and expected value.

GroupLens is an open architecture with freely
distributable protocols. Anyone who wants to
participate can write a news client to connect
with our GLRB, or a new GLRB that offers im-
proved service to our news clients. An open ar-
chitecture encourages interaction and innovation
by the community. For instance, one GroupLens
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participant has already written an proxy GLRB
that downloads his ratings to Poland overnight
so he gets better interactive performance!

The client library further encourages partic-
ipation, by simplifying the task of integrating
GroupLens with new news clients. For most
news clients, only 2-3% of the code must be mod-
ified to support GroupLens. Recently, several of
the maintainers of popular news clients have an-
nounced support for GroupLens. We look for-
ward to working with the community to add
GroupLens support to additional newsreaders.
We also encourage the development of new filter-
bots that use the client library to communicate
computed ratings to GroupLens.

Usenet is on the one hand a rich and valuable
information resource, and on the other hand a
quagmire of the useless and the tasteless. Grou-
pLens lets us team up to drain the quagmire
and separate the valuable from the useless. If we
work together we can each peruse a fraction of
the articles submitted each day, in exchange for
having the interesting articles pointed out to us.
More participants means more ratings available
to GroupLens, which means even better predic-
tions. The GroupLens experience is on-going at
http://www.cs.umn.edu/Research/GroupLens.
Join us in making Usenet useful again!
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